A Practical Approach for Modeling EUVL Mask Defects

Eric Gullikson, Charlie Cerjan, Dan Stearns and Paul Mirkarimi

Sematech Workshop 2000

EUVL Mask Defects

- Reflective mask phase defects can be small. eg. A 55 nm diameter, $\lambda/4$ high "top-hat" defect is predicted to be printable for an ETS-like camera. This has the same volume as a 25 nm sphere.
- Multilayer coating can affect defect printability.

Questions:

- Where are we?
 - What is the critical defect size?
- Where are we going?
 - Produce a "Defect free" mask.
- How will we know when we get there?

Answers require an understanding of defect printability.

An Unresolved Defect Will Scatter Light Out of the Entrance Pupil of the Camera

For an unresolved defect the image intensity is proportional to the total scattering cross section.

$$I(r) = 1 - \mathbf{s} \cdot PSF(r)$$

Progress is Being made in Understanding the Multilayer Defect Structure

Experiments with Au nano-particles have spurred new developments in modeling. (see Mirkarimi *et al.*)

Defect Modeling: 4 Step Problem

Approximate Methods

Large parameter space requires the use of approximate methods.

The Single Surface Approximation (SSA)

- Multilayer is replaced by a single reflecting surface.
- Simple scalar diffraction theory is used.

- Intuition developed in studies of scattering from roughness.
- Breaks down for large scattering angles because of multilayer effects.
- The limits can be verified with the more rigorous FDTD calculations.

FDTD Simulations used to Check the SSA in both Near and Far Field

Single Surface Approximation (SSA) Applies to Low Aspect Ratio Gaussian Bumps

Scattering Angle (deg)

The Single Surface Approximation (SSA) is Applicable to the Critical Defects of Interest

Substrate defect profiles are calculated using the non-linear growth model for the standard IBS Mo/Si multilayer.

SSA Tested for a Defect in Proximity to Absorber Lines

350 nm lines and spaces. Defect FWHM=63 nm, peak height=1.8 nm.

Printability Criterion: More Than 5% Increase in Linewidth at the Extremes of Focal Range

Validation Experiments using EUV Scattering

Initial Measurements on 30 nm Spheres are in good agreement with the Single Surface Approximation.

Defect Printability is Related to the EUV Scattering Cross Section

The aerial image intensity is related to the total *scattering cross section*.

$$I(r) = 1 - \mathbf{s} \cdot PSF(r)$$

The effect of multilayer smoothing may be modeled.

"Optimized Buffer" illustrates the potential gains by smoothing.

Summary

- The single surface approximation is shown to apply for EUVL critical defects.
- The point defect approximation provides an intuitive picture of the printability of unresolved defects.
- We are in a good position to determine the efficacy of smoothing strategies on the critical defect size.

		Standard	"Optimized"
		Mo/Si	Buffer Layer
<u>LineWidth</u>	<u>NA</u>	<u>Diam.</u>	<u>Diam.</u>
70 nm	0.10	26 nm –	→ 40 nm (?)
30 nm	0.25	19 nm -	→ 30 nm (?)

